How do you simplify #5 sqrt48 - 4 sqrt 75 #?

1 Answer
Nov 3, 2015

#=0#

Explanation:

#5sqrt48 - 4sqrt75#

Here, we first prime factorise #48# and #75# to simplify the expression.

#sqrt48=sqrt(3*2*2*2*2) = sqrt(3*2^2*2^2)#
#=4sqrt3#

Similarly:

#sqrt75=sqrt(3*5*5) = sqrt(3*5^2)#
#=5sqrt3#

#5sqrt48 - 4sqrt75 = 5*color(blue)(4sqrt3) - 4*color(blue)(5sqrt3#

#=20sqrt3-20sqrt3#

#=0#