Any term in an arithmetic sequence can be found from the formula
#color(blue)(a_n = a_1 + (n-1)d)#
So if can find the value of #a_1 and d# we can find any term,
In this case we are told that #a_1 = -32#
For the #9th# term, #n= 9# and #a_ = -120#
Use these values in the general formula.
#color(white)(......)color(blue)(a_ncolor(white)(...) = color(white)(...)a_1 color(white)(.......)+(n-1)d)#
#color(white)(......)uarrcolor(white)(..........)uarrcolor(white)(...............)uarrcolor(white)(...)uarr#
#" "-120color(white)(....)-32color(white)(..............)8color(white)(....)?#
This gives the equation:
#-120 = -32 +8d#
#-120+32 = 8d#
#-88 = 8d#
#d = -11#
Now the formula for the general term becomes:
#color(blue)(a_n = -32 + (n-1)(-11))" "larr# simplify
#color(blue)(a_n = -32 + -11n+11)#
#color(blue)(a_n = -11n -21)#
Find the #32nd# term (#n =32#)
#a_32 = -11(32)-21#
#a_32 = -352-21#
#a_32 = -373#