What is the Taylor series for #f(x)= cosx# centered on #x= pi/3#?

1 Answer
Nov 10, 2015

#f(x) = sum_(n=0)^oo ((-1)^nsin(pi/6 + (npi)/2))/(n!)(x-pi/3)^n#

Explanation:

The Taylor series of a function #f(x)# centered about #a# takes the form
#f(x) = sum_(n=0)^oo f^((n))(a)/(n!)(x-a)^n#

Looking at the derivatives of cosine, we have, for #k in ZZ^+#
#f^((4k))(pi/3) = cos(pi/3) = 1/2#
#f^((4k+1))(pi/3) = -sin(pi/3) = -sqrt(3)/2#
#f^((4k+2))(pi/3) = -cos(pi/3) = -1/2#
#f^((4k+3))(pi/3) = sin(pi/3) = sqrt(3)/2#

So we get

#f(x) = (1/2)/(0!)(x-pi/3)^0 + (-sqrt(3)/2)/(1!)(x-pi/3)^1 + (-1/2)/(2!)(x-pi/3)^2 + ...#

or, using the sine function to create a closed form,

#f(x) = sum_(n=0)^oo ((-1)^nsin(pi/6 + (npi)/2))/(n!)(x-pi/3)^n#