We will be using several techniques in the evaluation of this derivative.
The product rule:
#d/dxf(x)g(x) = f'(x)g(x) + f(x)g'(x)#
The chain rule:
#d/dxf(g(x)) = f'(g(x)g'(x)#
Implicit differentiation:
#d/dx f(y) = (df(y))/dydy/dx#
Derivative of the natural logarithm:
#d/dx ln(x) = 1/x#
(a property of logarithms)
#ln(x^n) = nln(x)#
Now, we proceed to evaluate the derivative.
Let #y = ln^x(x)#
#=> ln(y) = ln(ln^x(x)) = xln(ln(x))# (property of logarithms)
#=> d/dxln(y) = d/dxxln(ln(x))#
Through implicit differentiation and the derivative of natural log
#d/dxln(y) = d/dyln(y)dy/dx = 1/ydy/dx#
For the right hand side
#d/dxxln(ln(x)) = 1*ln(ln(x)) + x(d/dxln(ln(x)))# (product rule)
#d/dxln(ln(x)) = 1/(ln(x))*1/x = 1/(xln(x))# (chain rule)
#=> d/dxxln(ln(x)) =ln(ln(x)) + x/(xln(x))= ln(ln(x)) + 1/(ln(x))#
So we have
#1/ydy/dx = ln(ln(x)) + 1/(ln(x))#
Multiplying by #y# gives us
#dy/dx = y(ln(ln(x)) + 1/(ln(x)))#
Finally, we substitute back in for #y# to get
#d/dxln^x(x) = ln^x(x)(ln(ln(x)) + 1/(ln(x)))#