What is #int e^(-x^2)dx#?
1 Answer
#int e^(-x^2) dx = sqrt(pi)/2 "erf"(x) + C#
#=sum_(n=0)^oo (-1)^n/((n!)(2n+1))x^(2n+1) + C#
Explanation:
The error function
#"erf"(x) = 2/sqrt(pi) int_0^x e^(-t^2) dt#
So
Can we find out the value of the integral without using this special non-elementary function?
We can at least express it in terms of a power series:
#e^t = sum_(n=0)^oo t^n/(n!)#
Substituting
#e^(-x^2) = sum_(n=0)^oo (-1)^n/(n!)x^(2n)#
So:
#int e^(-x^2) dx = int (sum_(n=0)^oo (-1)^n/(n!)x^(2n)) dx#
#=sum_(n=0)^oo (-1)^n/((n!)(2n+1))x^(2n+1) + C#
Hence the power series for
#"erf"(x) = 2/sqrt(pi) sum_(n=0)^oo (-1)^n/((n!)(2n+1))x^(2n+1)#
since