Given: #y=-2x+2 .............................(1)#
#color(white)(xxxx) 6x+2y=3..................................(2)#
I am going change equation (2) into the format of #y=#something
Then I can equate both equations to each other through #y#
removing that variable. We will then only have #x#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Consider equation (2) "color(green)("Method shown in detail")#
Subtract #color(blue)(6x)# from both sides isolating the y-term
#color(brown)((6x+2y)color(blue)(-6x) =(3)color(blue)(-6x))#
#color(green)("The brackets are there only to show what is being altered or")#
#color(green)("grouped to make things easier to see what is happening")#
#(6x-6x)+2y = 3 -6x#
But #6x-6x =0# giving
#0+2y=3-6x#
#2y=3-6x#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Divide both sides by 2 so that we have y on its own")#
Not that #divide 2 -> times 1/2#
#color(brown)((2y) color(blue)( times 1/2) = (3-6x)color(blue)(times 1/2)#
#2/2 times y = 3/2 -6/2x#
#y=-3x+3/2.........................................(2_a)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Combining equations the remove the variable "y)#
#Equation (1) = y = Equation(2_a)#
#-2x+2 = y= -3x+3/2#
#-2x+2 = -3x+3/2#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Collecting like terms")color(green)(" Less detail now")#
#3x-2x=3/2-2#
#x=-1/2.........................................(3)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Substitute (3) into (1) to find y")#
#y=-2x+2 -> y=(-2)(1/2)+2#
#y=1#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Solution: "y=1 , x=-1/2)#