What are the mean and standard deviation of the probability density function given by #(p(x))/k=x^3-4x# for # x in [0,2]#, in terms of k, with k being a constant such that the cumulative density across the range of x is equal to 1?

1 Answer
Dec 7, 2015

The mean is #mu=16/15 approx 1.0667# and the standard deviation is #sigma=2sqrt(11)/15 approx 0.4422#

Explanation:

If #p(x)=k(x^[3}-4x)# for #x in [0,2]#, then #int_{0}^[2}k(x^{3}-4x) dx=k[x^{4}/4-2x^{2}]_{0}^{2}=k(4-8)=-4k#. Therefore, we require #-4k=1# so that #k=-1/4#.

Hence, the density function is #p(x)=1/4(4x-x^{3})=x-x^{3}/4#.

The mean is the expected value of #X#:

#mu=E[X]=int_{0}^{2} x*p(x)\ dx=int_{0}^{2}(x^[2}-x^{4}/4)\ dx#

#=[x^{3}/3-x^{5}/20]_{0}^{2}=8/3-32/20=16/15#.

The expected value of #X^{2}# is

#E[X^{2}]=int_{0}^{2} x^{2}*p(x)\ dx=int_{0}^{2}(x^[3}-x^{5}/4)\ dx#

#=[x^{4}/4-x^{6}/24]_{0}^{2}=4-64/24=4/3#.

Hence, the variance is #sigma^{2}=Var(X)=E[X^{2}]-(E[X])^{2}=4/3-(16/15)^2=44/225#.

The standard deviation is

#sigma=sqrt{sigma^[2}}=sqrt{44/225}=sqrt(44)/15=(2sqrt{11})/15#