How do you use the binomial series to expand #(1+x)^n#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sente Dec 10, 2015 Assuming #n# is a nonnegative integer, then the binomial theorem states that #(a+b)^n = sum_(k=0)^nC(n,k)a^(n-k)b^k= sum_(k=0)^n(n!)/(k!(n-k)!)a^(n-k)b^k# Applying it in this case with #a = 1# and #b = x#, we get #(1+x)^n = sum_(k=0)^n(n!)/(k!(n-k)!)1^(n-k)x^k = sum_(k=0)^n(n!)/(k!(n-k)!)x^k# #= x^n + nx +(n(n-1))/2x^2+(n(n-1)(n-2))/6x^3+...+(n(n-1))/2x^(n-2) + nx^(n-1) + 1# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 6631 views around the world You can reuse this answer Creative Commons License