How do you find the local max and min for #f (x) = x^(3) - 6x^(2) + 5#?

2 Answers
Dec 18, 2015

#

Explanation:

Find the critical values (when #f'(x)=0# or is undefined).

#f'(x)=3x^2-12x#

#f'(x)=3x(x-4)#

#f'(x)=0# when #x=0,4#.

Make a sign chart for #f'(x)#.

#color(white)(xxxxxxxxxxxx)0color(white)(xxxxxxxxxxxx)4#
#larr----------------rarr#
#color(white)(xxx)"POSITIVE"color(white)(xxxxx)"NEGATIVE"color(white)(xxxxx)"POSITIVE"#

There is a relative maximum at #x=0# because the derivative goes from positive to negative.

There is a relative minimum at #x=4# because the derivative goes from negative to positive.

Look at a graph:

graph{x^3-6x^2+5 [-36.65, 55.83, -32.08, 14.18]}

Dec 18, 2015

It has a local maxima at #(0, 5)#
It has a local minima at #(4, -27)#

Explanation:

Given -

#y=x^3-6x^2+5#
#dy/dx=3x^2-12x#
#(d^2y)/dx^2=6x-12#

#dy/dx=0 =>3x^2-12x=0#
#3x(x-4)=0#

#3x=0 #
#x=0#

#x-4=0#
#x=4#

AT #x=0; (d^2y)/dx^2=6(0)-12=-12 <0#
At #x=0; dy/dx=0;(d^2)/dx^2<0# Hence the function has a local maximum at #x=0#

AT #x=4;(d^2y)/dx^2=6(4)-12=24-12=12>0#

Local Maximum is -
At #x=0; y=(0)^3-6(0)^2+5=5#

#(0, 5)#

AT #x=4; dy/dx=0;(d^2y)/dx^2>0#. Hence the function has a local minimum.

Local Minimum -
At #x=4;y=(4)^3-6(4)^2+5=64-96+5=-27#
#(4, -27)#

graph{x^3-6x^2+5 [-58.5, 58.55, -29.24, 29.3]}

Maxima Minima