What is the equation of the line tangent to # f(x)=1/(x^2+x+1) # at # x=-1 #?
1 Answer
Jan 3, 2016
Explanation:
Rewrite
#f(x)=(x^2+x+1)^-1#
Use the chain rule to differentiate
#d/dx(u^-1)=-u^-2=-1/u^2#
Thus,
#f'(x)=-1/(x^2+x+1)^2*d/dx(x^2+x+1)#
#=-(2x+1)/(x^2+x+1)^2#
To find the slope of the tangent line, calculate
#f'(-1)=-(2(-1)+1)/((-1)^2+(-1)+1)^2=-(-1)/1=1#
Find the point the tangent line will intersect:
#f(-1)=1/((-1)^2+(-1)+1)=1/1=1#
The tangent line will intersect the point
Write in point slope form:
#y-1=1(x+1)#
Or, in slope intercept form:
#y=x+2#
graph{(1/(x^2+x+1)-y)(x+2-y)=0 [-10.08, 9.92, -3.12, 6.88]}