What is the equation of the line tangent to # f(x)=xcscx # at # x=pi/3 #?
1 Answer
Explanation:
Find the point the tangent line will intercept:
#f(pi/3)=pi/3csc(pi/3)=pi/3(2/sqrt3)=(2pi)/(3sqrt3)#
The tangent line will intercept the point
To find the slope of the tangent line, calculate
First, to find
#f'(x)=cscxd/dx[x]+xd/dx[cscx]#
#=cscx-xcscxcotx#
#=cscx(1-xcotx)#
The slope of the tangent line:
#f'(pi/3)=csc(pi/3)(1-pi/3cot(pi/3))=(2/sqrt3)(1-pi/3(sqrt3/3))#
#=2/sqrt3-(2pi)/9=(18-2pisqrt3)/(9sqrt3)#
Relate the slope of the line and the point it intercepts in an equation in point-slope form.
#y-(2pi)/(3sqrt3)=(18-2pisqrt3)/(9sqrt3)(x-pi/3)#
The function and its tangent line graphed:
graph{(y-(2pi)/(3sqrt3)-(18-2pisqrt3)/(9sqrt3)(x-pi/3))(y-xcsc(x))=0 [-16.08, 15.96, -8.22, 7.8]}