What is the inverse of the function #f(x) = -3x + 3#?

2 Answers
Jan 11, 2016

#f^-1(x) = (3-x)/3 quad# Step by step working is shown below.

Explanation:

To find inverse function follow the following steps

Step 1: Swap #x# and #y#
Step 2: Solve for #y#
Step 3: The result you got is the inverse function. Write in proper notation.

Let us see this with the given problem.

Let #y=f(x) = -3x+3#

#y=-3x+3#

Step 1: Swap #x# and #y#
#x=-3y+3#

Step 2: Solve for #y#

#x-3 = -3y quad# On subtracting 3 from both sides.
#(x-3)/-3= y quad# Dividing by -3 on both sides isolates #y#

#(3-x)/3 = y#

Step 3: Writing it in proper notation

#f^-1(x) = (3-x)/3#

Jan 11, 2016

#bar(f(x)) = 1-x/3#
#color(white)("XXXXXXXXX")#where #bar(f(x))# denotes the inverse of #f(x)=-3x+3#

Explanation:

Let #bar(f(x))# be the inverse of #f(x)=-3x+3#

By definition of inverse
#color(white)("XXX")f(bar(f(x)))=color(blue)(x)#

But if #f(color(red)(x)) = -3color(red)(x)+3#
then
#color(white)("XXX")f(color(red)(bar(f(x))))=-3color(red)(bar(f(x)))+3#

Therefore
#color(white)("XXX")-3bar(f(x))+3=color(blue)(x)#

#color(white)("XXX")-3bar(f(x)) = x-3#

#color(white)("XXX")bar(f(x)) = (x-3)/(-3)#

#color(white)("XXX")bar(f(x))=1-x/3#