Is #f(x)=x^2lnx# increasing or decreasing at #x=1#?
1 Answer
Jan 17, 2016
Increasing.
Explanation:
The derivative of a function can be used to determine if a function is increasing or decreasing at a point.
- If
#f'(1)<0# , then#f(x)# is decreasing at#x=1# . - If
#f'(1)>0# , then#f(x)# is increasing at#x=1# .
First, find
#f'(x)=lnxd/dx[x^2]+x^2d/dx[lnx]#
#f'(x)=lnx*(2x)+x^2(1/x)#
#f'(x)=2xlnx+x#
Now, find
#f'(1)=2(1)ln(1)+1#
#f'(1)=2(0)+1#
#f'(1)=1#
Since
We can check a graph of
graph{x^2lnx [-0.221, 1.6745, -0.353, 0.595]}