What is the derivative of # f(x)=(sinx^2)/(1-cosx)#?

1 Answer
Jan 19, 2016

Assuming no error in the question, #f'(x)=(2xcos(x^2)-2cos(x)cos(x^2)-sin(x)sin(x^2))/(1-cosx)^2#

Explanation:

Assuming no error in the question.
Apply the quotient rule with numerator #sin(x^2)# and denominator #1-cosx#

#d/dx(sin(x^2)) = cos(x^2) d/dx(x^2)# #" "# #" "# (use the chain rule)

#= 2xcos(x^2)#

And #d/dx(1-cosx) = sinx#

#f(x) = sin(x^2)/(1-cosx)#

We get,

#f'(x) = ([2xcos(x^2)] (1-cosx) - sin(x^2) [sinx])/(1-cosx)^2#

This can be rewritten:

#f'(x)=(2xcos(x^2)-2cos(x)cos(x^2)-sin(x)sin(x^2))/(1-cosx)^2#

If there is an error in the question

If the question is intended to ask for the derivative of

#f(x) = (sinx)^2/(1-cosx) = sin^2x/(1-cosx)#,

then instead of using the quotient rule immediately, it is simpler to apply some trigonometry first.

#sin^2x/(1-cosx) = sin^2x/(1-cosx) * (1+cosx)/(1+cosx)#

# = (sin^2x(1+cosx))/(1-cos^2x)#

# = (sin^2x(1+cosx))/sin^2x#

# = 1+cosx#.

That is, #f(x) = 1+cosx#

So the derivative is #f'(x) = -sinx#.

I think that this is simpler than applying the quotient rule to get,

#f'(x) = (2sinxcosx(1-cosx)-sin^2x(sinx))/(1-cosx)^2#,

and then simplifying to

#f'(x) = (sinx(2cosx-2cos^2x-sin^2x))/(1-cosx)^2#

# = (sinx(2cosx-cos^2x-cos^2x-sin^2x))/(1-cosx)^2#

# = (sinx(2cosx-cos^2x-1))/(1-cosx)^2#

# = (sinx(-1+2cosx-cos^2x))/(1-cosx)^2#

# = -sinx#