How do you differentiate #f(x)=sin2x * cotx# using the product rule?
1 Answer
Jan 24, 2016
Explanation:
-
The product rule:
#d/(dx)[f(x)]=("derivative of the first term" * "the second term")+("derivative of the second term"*"the first term")# -
#d/dx[cotx]=-csc^2x # -
#d/(dx)[f(x)]= (d/dx[sin(2x)]*cotx)+(d/dx[cotx]*sin2x)#
#=(2cos2x*cotx)+(-csc^2x*sin2x)#
#=2cos2x*cotx-csc^2x*sin2x# -
You could just stop there, or you could simplify the answer further by uniting all the angles as
#x# using double angle formulas.