How do you use Heron's formula to find the area of a triangle with sides of lengths #7 #, #5 #, and #6 #?
1 Answer
Jan 30, 2016
#A = sqrt(s(s-a)(s-b)(s-c)) = 6sqrt(6) ~~ 14.6969#
Explanation:
Heron's formula tells us that the area
#A = sqrt(s(s-a)(s-b)(s-c))#
Where
In our case, let
Then
#A = sqrt(s(s-a)(s-b)(s-c))#
#=sqrt(9 * (9-7) * (9-5) * (9-6))#
#=sqrt(9*2*4*3)#
#= sqrt(36*6) = sqrt(36)*sqrt(6) = 6sqrt(6) ~~ 14.6969#