What is the equation of the line tangent to #f(x)=x cos^2(2x) # at #x=pi/12#?
1 Answer
Explanation:
First, find the point the tangent line will intercept.
#f(pi/12)=pi/12cos^2(pi/6)=pi/12(sqrt3/2)^2=pi/16#
The point of tangency is
To find the slope of the tangent line, find the value of the derivative at
To find the derivative of the function, use the product rule.
#f'(x)=cos^2(2x)d/dx[x]+xd/dx[cos^2(2x)]#
Find each internal derivative:
#d/dx[x]=1#
The next requires the chain rule:
#d/dx[cos^2(2x)]=2cos(2x)d/dx[cos(2x)]#
#=2cos(2x)(-sin(2x))d/dx[2x]=-4cos(2x)sin(2x)#
Thus,
#f'(x)=cos^2(2x)-4xcos(2x)sin(2x)#
The slope of the tangent line is:
#f'(pi/12)=cos^2(pi/6)-pi/3cos(pi/6)sin(pi/6)#
#=3/4+pi/3(sqrt3/2)(1/2)=3/4-(pisqrt3)/12=(9-pisqrt3)/12#
Thus, the tangent line passes through the point
This can be related in an equation in point-slope form:
#y-pi/16=(9-pisqrt3)/12(x-pi/12)#
Graphed are the function and its tangent line:
graph{(x(cos(2x))^2-y)(y-pi/16-(9-pisqrt3)/12(x-pi/12))=0 [-1.25, 1.787, -0.55, 0.969]}