What is the equation of the line tangent to #f(x)=x cos^2(2x) # at #x=pi/12#?

1 Answer
Jan 31, 2016

#y-pi/16=(9-pisqrt3)/12(x-pi/12)#

Explanation:

First, find the point the tangent line will intercept.

#f(pi/12)=pi/12cos^2(pi/6)=pi/12(sqrt3/2)^2=pi/16#

The point of tangency is #(pi/12,pi/16)#.

To find the slope of the tangent line, find the value of the derivative at #x=pi/12#.

To find the derivative of the function, use the product rule.

#f'(x)=cos^2(2x)d/dx[x]+xd/dx[cos^2(2x)]#

Find each internal derivative:

#d/dx[x]=1#

The next requires the chain rule:

#d/dx[cos^2(2x)]=2cos(2x)d/dx[cos(2x)]#

#=2cos(2x)(-sin(2x))d/dx[2x]=-4cos(2x)sin(2x)#

Thus,

#f'(x)=cos^2(2x)-4xcos(2x)sin(2x)#

The slope of the tangent line is:

#f'(pi/12)=cos^2(pi/6)-pi/3cos(pi/6)sin(pi/6)#

#=3/4+pi/3(sqrt3/2)(1/2)=3/4-(pisqrt3)/12=(9-pisqrt3)/12#

Thus, the tangent line passes through the point #(pi/12,pi/16)# and has a slope of #(9-pisqrt3)/12#.

This can be related in an equation in point-slope form:

#y-pi/16=(9-pisqrt3)/12(x-pi/12)#

Graphed are the function and its tangent line:

graph{(x(cos(2x))^2-y)(y-pi/16-(9-pisqrt3)/12(x-pi/12))=0 [-1.25, 1.787, -0.55, 0.969]}