How do you find the inverse of #((5, 2), (-1, a))#?
1 Answer
Feb 14, 2016
Use the formula for the inverse of a
#((5,2),(-1,a))^(-1) = ((a/(5a+2),-2/(5a+2)),(1/(5a+2),5/(5a+2)))#
Explanation:
In general the inverse of a
#((a,b),(c,d))^(-1) = 1/abs((a,b),(c,d)) ((d,-b),(-c,a))#
In our example, let's calculate the determinant first:
#abs((5,2),(-1,a)) = 5a+2#
So provided
#((5,2),(-1,a))^(-1) = 1/(5a+2) ((a,-2),(1,5))=((a/(5a+2),-2/(5a+2)),(1/(5a+2),5/(5a+2)))#