How do you integrate #int x^2 csc ^2 x dx # using integration by parts? Calculus Techniques of Integration Integration by Parts 1 Answer Jim H Feb 17, 2016 Observe that #intcsc^2x dx = -cotx +C# (which is integrable by substitution) and #d/dx(x^2) = 2x#, so Integrating by parts twice should work. Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2145 views around the world You can reuse this answer Creative Commons License