How do you evaluate the integral of #int (2^tanθ)sec^2(θ) dθ#?
1 Answer
Explanation:
Note that the
#frac{"d"}{"d"theta}(tan theta) = sec^2 theta#
The integrand looks to be a result of the chain rule so let's work backwards.
The derivative of an exponential function is retains the exponential. So we begin by finding the derivative of
#frac{"d"}{"d"theta}(2^{tan theta}) = frac{"d"}{"d"theta}(e^{ln2 * tan theta})#
#= e^(ln2 * tan theta) * "d"/("d"theta)(ln2 * tan theta)#
#= e^(ln2 * tan theta) * ln2 * sec^2 theta#
#= 2^{tan theta} * ln2 * sec^2 theta#
Therefore,
#int 2^{tan theta} * ln2 * sec^2 theta "d"theta = 2^{tan theta} + "Constant"#
Divide both sides by
#int 2^{tan theta} * sec^2 theta "d"theta = 2^{tan theta}/ln2 + "Another Constant"#