How do you differentiate #f(x)=xe^(2x)-x# using the product rule?
1 Answer
Feb 24, 2016
Explanation:
using the
#color(blue) " Product rule " # If f(x) = g(x).h(x) then f'(x) = g(x).h'(x) + h(x).g'(x)
and
#d/dx(e^x) = e^x # the
#color(blue)" chain rule " "is also used here "#
#d/dx[f(g(x))] = f'(g(x)). g'(x) # hence :
#f'(x) =[ x d/dx(e^(2x)) + e^(2x) d/dx(x)] - 1 #
# =[ xe^(2x) d/dx(2x) + e^(2x).1 ] -1 #
# =[ 2xe^(2x) + e^(2x) ] - 1 = e^(2x)(2x + 1) - 1#