First of all split the fraction up like so:
#(x^2+2x-1)/(x^2+9) =x^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)#
We can now integrate each fraction one by one, i.e:
#int(x^2+2x-1)/(x^2+9)dx =intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx#
We will have to do a bit of rearranging of the first fraction (add and subtract 9):
#intx^2/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx=#
#=int(x^2+9-9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)dx#
This can now be rearranged like so:
#=int(x^2+9)/(x^2+9)+(2x)/(x^2+9) -1/(x^2+9)-9/(x^2+9)dx#
#=int1+(2x)/(x^2+9) -10/(x^2+9)dx#
-The first term obviously just integrates to #x#.
-For the second term we should apply: #int(f'(x))/f(x)=ln(f(x))+C#
#int (2x)/(x^2+9)dx=ln(x^2+9)+C#
-And for the third term:
#int10/(x^2+9)dx#
Use the substitution #x=3tan(u)#
#-> dx = 3 sec^2(u)du#
We also need the trig identity: #tan^2(x)+1=sec^2(x)# Putting the substitution in:
#10int(3sec^2(u))/(9tan^2(u)+9)du=10/3intsec^2(u)/sec^2(u)du#
#=10/3intdu=10/3u+C#
Reverse the substitution and we get:
#10/3tan^-1(x/3)+C#
So returning to our original integral if apply what have found we get that:
#int(x^2+2x-1)/(x^2+9)dx=int1+(2x)/(x^2+9) -10/(x^2+9)dx#
#=x+ln(x^2+9)-10/3tan^-1(x/3)+C#