How to integrate arc sin x dx?

1 Answer
Mar 4, 2016

#intarcsin(x)dx = xarcsin(x)+sqrt(1-x^2)+C#

Explanation:

We will proceed by using integration by substitution and integration by parts.

Substitution:

Let #t = arcsin(x) => x = sin(t)# and #dx = cos(t)dt#

Then, substituting, we have

#intarcsin(x)dx = inttcos(t)dt#

Integration by Parts:

Let #u = t# and #dv = cos(t)dt#

Then #du = dt# and #v = sin(t)#

By the integration by parts formula #intudv = uv - intvdu#

#inttcos(t)dt = tsin(t)-intsint(t)dt#

#=tsint(t)-(-cos(t)+C)#

#=tsin(t)+cos(t)+C#

#=arcsin(x)*sin(arcsin(x))+cos(arcsin(x))+C#

As #sin(arcsin(x)) = x# and #cos(arcsin(x)) = sqrt(1-x^2)#

(try drawing a right triangle where #sin(theta)=x# and calculate #cos(theta)# to obtain the second equality)

we obtain our final result:

#intarcsin(x)dx = xarcsin(x)+sqrt(1-x^2)+C#