How do you differentiate #f(x)= (3x+1)^4(4-x^2) # using the product rule?
1 Answer
Mar 9, 2016
#dy/dx=[-2x(3x+1)^4]+[(48-12x^2)(3x+1)^3]#
Explanation:
Given -
#f(x)=(3x+1)^4(4-x^2)#
#y=(3x+1)^4(4-x^2)#
Use chain rule and product rule to differentiate this -
#dy/dx=[(3x+1)^4(-2x)]+[(4-x^2)(4)(3x+1)^3(3)#
#dy/dx=[-2x(3x+1)^4]+[12(4-x^2)(3x+1)^3]#
#dy/dx=[-2x(3x+1)^4]+[(48-12x^2)(3x+1)^3]#