How do you write the equation #y+9= -3(x-2)# in standard form?

2 Answers
Mar 10, 2016

#y=-3x-3#

Explanation:

Recall that the standard form of the equation of a line is:

#color(blue)(|bar(ul(color(white)(a/a)y=mx+bcolor(white)(a/a)|)#

where:
#y=#y-coordinate
#m=#slope
#x=#x-coordinate
#b=#y-intercept

Converting to Standard Form
#1#. Start by simplifying the right side of the equation.

#y+9=-3(x-2)#

#y+9=-3x+6#

#2#. Subtract #-9# from both sides.

#y+9# #color(red)(-9)=-3x+6# #color(red)(-9)#

#3#. Simplify.

#color(green)(|bar(ul(color(white)(a/a)y=-3x-3color(white)(a/a)|)#

Mar 10, 2016

#y = -3x -3#

Explanation:

Given #y+9= -3(x-2)# rewrite in standard form which for linear first order is: #y = mx+b#
#y+9 =-3x+6# subtract 9 from both sides
#y = -3x+6-9 = -3x -3# this the standard form
#y = -3x -3#