For #f(x)=x^2sin(x^3/3)# what is the equation of the tangent line at #x=pi#?

1 Answer
Mar 10, 2016

Solution reworked! Tony B

#color(blue)(y~~(-64.6977)x+195.355)# to 3 dp

Explanation:

Let #f(x)=y=x^2sin(x^3/3)#

Let #u=x^2 =>color(brown)( (du)/dx=2x)#

Let #w=x^3/3=> color(brown)( (dw)/dx=(3x^2)/3 = x^2)#

Let #v=sin(w)=> color(brown)((dv)/dx)=(dv)/(dw) *(dw)/(dx) = x^2cos(w) color(brown)(= x^2cos((x^3)/3))#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~
Using :#" "(dy)/(dx)=v (du)/(dx)+u (dv)/(dx)#

#=> (dy)/(dx)= sin(w)*2x+x^2*x^2cos(w)#

#=> (dy)/(dx)= 2xsin((x^3)/color(red)(2))+x^4cos((x^3)/3) color(red)("Found the error!")#

#=> (dy)/(dx)= 2pisin((pi^3)/color(magenta)(3))+pi^4cos((pi^3)/3)" "color(magenta)("Corrected"#

'~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Consider "2pisin((pi^3)/3)#
#pi^3/3 ~~ 10.3345" radians "-> 1.645" revolutions "-= 232.176^o#
So#" "color(brown)(2pisin(pi^3/2) ~~-4.9631 " 4dp") color(magenta)(" Corrected")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("Consider "pi^4cos(pi^3/3))#

#pi^3/3 ~~10.3354" radians " -> 1.6449" revolutions " -= 232.176^o #

So#" "color(brown)(pi^4cos(pi^3/3)~~ -59.7346#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)(=>(dy)/(dx)= -64.6977" "color(magenta)(" Corrected - Tony B"#

Tony B
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the equation of the tangent")#

Derived the gradient as -64.6977 to 4 decimal places

Thus #y=mx+c" "->" "y=(-64.6977)x+c#...........................(1)
Need to establish a point coordinate so that #y=mx+c# can be resolved.

#color(brown)(underline("Determine value of y at "x=pi))#

At #x=pi#

# y=x^2sin(x^3/3) -> pi^2*sin(pi^3/3)#

Consider #sin(pi^3/3)#

The #pi^3/3# is a count of radians and there are #2pi# radians in a complete cycle

So #pi^3/3 ~~10.33" radians"#

This is #~~ 10.33/(2pi)" full cycles" ~~1.644#

For reference #0.644" cycles "~~232.176^o#

So #color(brown)(y=pi sin(pi^3/3) ~~pi sin(232.176)~~-7.899)# to 3 dp
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So equation (1) becomes #("at "x=pi#)

#y=mx+c" "->" "-7.899=(-64.6977)pi+c#

#=> c~~-7.899+(64.6977)pi#

#=>c~~195.355# to 3 dp

Thus the equation of the tangent is

#color(blue)(y~~(-64.6977)x+195.355)# to 3 dp