How do you find the limit of #(sqrt(6-x)-2)/(sqrt(3-x) -1)# as x approaches 2? Calculus Limits Determining Limits Algebraically 1 Answer Konstantinos Michailidis Mar 12, 2016 Hence the limit #lim_(x->2) (sqrt(6-x)-2)/(sqrt(3-x) -1)=0/0# is an undefined form of #0/0# we can apply L'Hopital rule hence we get #lim_(x->2) (sqrt(6-x)-2)/(sqrt(3-x) -1)= lim_(x->2) [(d(sqrt(6-x)-2))/dx]/[(sqrt(3-x) -1)/dx]= lim_(x->2) [-(1)/(2sqrt(6-x))]/[-(1)/(2sqrt(3-x)]]= lim_(x->2) [sqrt(3-x)/sqrt(6-x)]= 1/2# Finally #lim_(x->2) (sqrt(6-x)-2)/(sqrt(3-x) -1)=1/2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 9002 views around the world You can reuse this answer Creative Commons License