What is the inverse of #f(x)= -log_3 (x^3)-3log_3(x-3)# ?
1 Answer
Mar 12, 2016
#f^(-1)(y) = sqrt(3^(-y/3)+9/4)+3/2#
Explanation:
Assuming we are dealing with
Let
#y = f(x)#
#= -log_3(x^3)-3log_3(x-3)#
#=-3 log_3(x)-3 log_3(x-3)#
#=-3 (log_3(x)+log_3(x-3))#
#=-3 log_3(x(x-3))#
#=-3 log_3(x^2-3x)#
#=-3 log_3((x-3/2)^2-9/4)#
Then:
#-y/3 = log_3((x-3/2)^2-9/4)#
So:
#3^(-y/3) = (x-3/2)^2-9/4#
So:
#3^(-y/3)+9/4 = (x-3/2)^2#
So:
#x-3/2 = +-sqrt(3^(-y/3)+9/4)#
In fact, it must be the positive square root since:
#x-3/2 > 3-3/2 > 0#
So:
#x = sqrt(3^(-y/3)+9/4)+3/2#
Hence:
#f^(-1)(y) = sqrt(3^(-y/3)+9/4)+3/2#