Triangle A has sides of lengths #36 ,24 #, and #16 #. Triangle B is similar to triangle A and has a side of length #8 #. What are the possible lengths of the other two sides of triangle B?

1 Answer

Triangle A: 36, 24, 16
Triangle B: #8,16/3,32/9#
Triangle B: #12, 8, 16/3#
Triangle B: # 18, 12, 8#

Explanation:

From the given
Triangle A: 36, 24, 16

Use ratio and proportion

Let x, y, z be the sides respectively of triangle B proportional to triangle A

Case 1.

If x=8 in triangle B, solve y
#y/24=x/36#

#y/24=8/36#
#y=24*8/36#
#y=16/3#

If x=8 solve z
#z/16=x/36#
#z/16=8/36#
#z=16*8/36#
#z=32/9#
~~~~~~~~~~~~~~~~~~~~~~~
Case 2.

if y=8 in triangle B solve x
#x/36=y/24#
#x/36=8/24#
#x=36*8/24#
#x=12#

If y=8 in triangle B solve z
#z/16=y/24#
#z/16=8/24#
#z=16*8/24#
#z=16/3#
~~~~~~~~~~~~~~~~~~~~~~~
Case 3.

if z=8 in triangle B, solve x
#x/36=z/16#
#x/36=8/16#
#x=36*8/16#
#x=18#

if z=8 in triangle B, solve y
#y/24=z/16#
#y/24=8/16#
#y=24*8/16#
#y=12#

God bless....I hope the explanation is useful.