What is #int (4-x ) / (x^3-6x +4 )#?
1 Answer
#int (4-x)/(x^3-6x+4) dx =#
#=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C#
Explanation:
Express as a partial fraction decomposition first:
#x^3-6x+4#
#= (x-2)(x^2+2x-2)#
#= (x-2)(x^2+2x+1-3)#
#=(x-2)(x+1-sqrt(3))(x+1+sqrt(3))#
Solve:
#(4-x)/(x^3-6x+4)#
#=A/(x-2) + B/(x+1-sqrt(3)) + C/(x+1+sqrt(3))#
#=(A(x^2+2x-2)+B(x-2)(x+1+sqrt(3))+C(x-2)(x+1-sqrt(3)))/(x^3-6x+4)#
#=(A(x^2+2x-2)+B(x^2-(1-sqrt(3))x-2(1+sqrt(3)))+C(x^2-(1+sqrt(3))x-2(1-sqrt(3))))/(x^3-6x+4)#
#=((A+B+C)x^2+(2A-(1-sqrt(3))B-(1+sqrt(3))C)x-2(A+(1+sqrt(3))B+(1-sqrt(3))C))/(x^3-6x+4)#
Equating coefficients, we get the following simulataneous equations:
#(a)color(white)(-)A+B+C = 0#
#(b)color(white)(-)2A-(1-sqrt(3))B-(1+sqrt(3))C = -1#
#(c)color(white)(-)A+(1+sqrt(3))B+(1-sqrt(3))C = -2#
Subtracting
#(d)color(white)(-)A-2B-2C = 1#
Adding twice
#3A = 1#
So
Adding
#(e)color(white)(-)3A+2sqrt(3)B-2sqrt(3)C=-3#
We know
#2sqrt(3)B-2sqrt(3)C=-4#
Hence:
#(f)color(white)(-)B-C = -2/sqrt(3) = -2sqrt(3)/3#
From
#(g)color(white)(-)B+C = -1/3#
Then
#2B = (-1-2sqrt(3))/3#
and
#2C = (-1+2sqrt(3))/3#
Hence:
#(4-x)/(x^3-6x+4)#
#=1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3)))#
Then use:
#int (4-x)/(x^3-6x+4) dx =#
#int 1/(3(x-2)) + (-1-2sqrt(3))/(6(x+1-sqrt(3))) + (-1+2sqrt(3))/(6(x+1+sqrt(3))) dx#
#=1/3 ln abs(x-2) + (-1-2sqrt(3))/6 ln abs(x+1-sqrt(3))+ (-1+2sqrt(3))/6 ln abs(x+1+sqrt(3)) + C#