How do you write a polynomial in standard form, then classify it by degree and number of terms #14x^2 - 8 + 5x - 6x^2 + 2x#?
1 Answer
standard form:
number of terms:
degree of polynomial in standard form:
Explanation:
Determining the Standard Form of the Polynomial
Notice how your equation follows the general equation of a quadratic function in standard form,
#14x^2-8+5x-6x^2+2x=0#
#14x^2-6x^2+5x+2x-8=0#
#color(green)(|bar(ul(color(white)(a/a)8x^2+7x-8=0color(white)(a/a) |)))#
Determining the Number of Terms
The number of terms of the polynomial in standard form can be found by first defining what a term is. A
For example (but not limited to):
- Single numbers:
#3, 56, 623, 6134, 23980# - Variables:
#x, r, u, a, f# - Number and variable:
#3x, 56r, 623u, 6134a, 23980f#
Going back to your equation, the terms would be the following, where the positive and negative signs are ignored:
#underbrace(8x^2)_color(red)("term")+underbrace(7x)_color(red)("term")-underbrace(8)_color(red)("term")=0color(white)(X),color(white)(X)# thus:
#color(green)(|bar(ul(color(white)(a/a)"number of terms"=3color(white)(a/a)|)))#
Determining the Degree
To determine the degree, take the
#underbrace(8x^2)_color(red)("term")+underbrace(7x)_color(red)("term")-underbrace(8)_color(red)("term")=0#
-
#8x^color(darkorange)2color(teal)(->)color(darkorange)2# -
#7x^color(darkorange)1color(teal)(->)color(darkorange)1# -
#8color(teal)(->)0#
As you can see, the highest exponent is
#color(green)(|bar(ul(color(white)(a/a)"deg"(8x^2+7x-8)=2color(white)(a/a)|)))#