How do you solve the system of equations # 3x+2y = 13# and #x+5y = 13# by elimination?

1 Answer
Mar 22, 2016

#(x,y)=(3,2)#

Explanation:

#color(blue)(3x+2y=13#

#color(blue)(x+5y=13)#

You can see clearly that,we can eliminate #3x# in the first equation by #x# in the second equation if we multiply it with #-3# to get #-3x#

#rarr-3(x+5y=13)#

#rarr-3x-15y=-39#

Add both the equations

#rarr(3x+2y=13)+(-3x-15y=-39)#

#rarr-13y=-26#

#color(green)(rArry=(-26)/-13=26/13=2#

Substitute the value of #y# to the second equation

#rarrx+5(2)=13#

#rarrx+10=13#

#color(green)(rArrx=13-10=3#

But before concluding it Check your answer

#1)#Check #color(blue)((3x+2y=13)#

#rarr3(3)+2(2)=13#

#rarr9+4=13#

#color(green)(|->13=13#

#2)#Check #color(blue)((x+5y=13)#

#rarr3+5(2)=13#

#rarr3+10=13#

#color(green)(|->13=13#

#:.color(indigo)(ul bar |x,y=3,2|#