What is the equation of the line tangent to # f(x)=sqrt(5+x) # at # x=-1 #?

1 Answer

Equation of the line is
#x-4y=-9" "#the tangent line

Explanation:

From the given #f(x)=sqrt(5+x) # at #x=-1#

We need to solve for the slope at the given point. Obtain the first derivative #f' (x)#, then find slope #m=f' (-1)#

The first derivative
#d/dx(f(x))=f' (x)=d/dx(sqrt(5+x))#

#f' (x)=1/(2sqrt(5+x))*d/dx(5+x)#

#f' (x)=1/(2sqrt(5+x))*(d/dx(5)+d/dx(x))#

#f' (x)=1/(2sqrt(5+x))*(0+1)#

#f' (x)=1/(2sqrt(5+x))#

Determine now the slope #m=f' (-1)#

#m=f' (-1)=1/(2sqrt(5+(-1)))=1/(2sqrt4)=1/4#

We now have the slope. We need to find the ordinate #y=f(-1)# using #x=-1#
#f(x)=sqrt(5+x) #
#f(-1)=sqrt(5+(-1)) #

#f(-1)=sqrt(4) #
#f(-1)=2#

the required point #(-1, 2)#

We can now solve for the equation of the tangent line using Point-Slope Form

#y-y_1=m(x-x_1)#

#y-2=1/4(x--1)#
#4(y-2)=x+1#
#4y-8=x+1#

#x-4y=-9" "#the tangent line
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kindly see the graphs of #f(x)=sqrt(5+x)# and the tangent line #x-4y=-9" "# at #(-1, 2)#
graph{((y-sqrt(5+x))(x-4y+9))=0[-7,5,-3,3]}

God bless....I hope the explanation is useful.