How do you evaluate the integral of #int 1/ (sec^3 x tan x) dx#?

2 Answers
Apr 6, 2016

#=int1/(sec^3x(sinx/cosx))dx=intsinx/(sec^4x xxsin^2x)dx=int(cos^4xxsinx)/(1-cos^2x)dx#

proceed putting
#cosx = z and dz= -sinxdx#
#I=-intz^4/(1-z^2)dz=intz^4/(z^2-1)dz#

try now

Apr 6, 2016

#int1/(sec^3x tanx) dx =ln|cscx-cotx|+cosx+1/3 cos^3x +C #

Explanation:

#int1/(sec^3x tanx) dx = int1/sec^3x * 1/tanx dx=int cos^3xcot x*dx #

#=intcos^3x *cosx/sinx *dx = intcos^4x/sinx dx=int(cos^2x*cos^2x)/sinx dx#

#=int( (1-sin^2x)(1-sin^2x))/sinx dx =int(1-2sin^2x+sin^4x)/sinx dx#

#=int (1/sinx -2sin^2x/sinx +sin^4x /sinx) dx#

#=int (cscx -2sinx +sin^3x)dx #
#= int(cscx-2sinx+sinxsin^2x)dx#
#= int(cscx-2sinx+sinx(1-cos^2x))dx #
#= int(cscx-2sinx+sinx-cos^2x sin x)dx#
# = int(cscx-sinx-cos^2x sin x)dx#
#=ln|cscx-cotx|+cosx+1/3 cos^3x +C#