A line segment has endpoints at #(1 ,2 )# and #(3 , 1)#. The line segment is dilated by a factor of #4 # around #(2 , 3)#. What are the new endpoints and length of the line segment?

1 Answer

New Endpoints are #(-2, -1)# and #(6, -5)#
Length #l=8.94427" "#

Explanation:

Let #A(x_a, y_a)=(1, 2)#
Let #B(x_b, y_b)=(3, 1)#
Let #R(x_r, y_r)=(2, 3)#

Let the new endpoints be
#C(x_c, y_c)# and #D(x_d, y_d)#

Let #k=4#

Solve the new endpoints by ratio and proportion

#(RC)/(RA)=k#

#(x_c-x_r)/(x_a-x_r)=4#
#(x_c-2)/(1-2)=4#

#x_c=-2#

#(y_c-y_r)/(y_a-y_r)=4#
#(y_c-3)/(2-3)=4#

#y_c=-1#

#(RD)/(RB)=k#
#(x_d-x_r)/(x_b-x_r)=4#
#(x_d-2)/(3-2)=4#
#x_d=6#

#(y_d-y_r)/(y_b-y_r)=4#
#(y_d-3)/(1-3)=4#
#y_d=-5#

Length

#l=sqrt((x_d-x_c)^2+(y_d-y_c)^2)#
#l=4sqrt(5)=8.94427" "#

God bless....I hope the explanation is useful