An object has a mass of #2 kg#. The object's kinetic energy uniformly changes from #32 KJ# to #72 KJ# over #t in [0, 4 s]#. What is the average speed of the object?

1 Answer

#"Initial KE"=(E_i)=32kJ=32xx10^3J#

After 4s

#"Final KE"=(E_f)=72kJ=72xx10^3J#

KE uniformly increases, so it will have a constant positive slope when plotted against time and this slope will be #(Delta E)/(Deltat)=(E_f- E_i)/(Delta t)=((72-32)xx10^3)/4=10^4J/s#

#,"where "Delta t=4s#

If at t th instant (# t in [0,4]#) the velocity of the mass be #v# then the KE at #t# th instant

#E_t=1/2xxmxxv^2=1/2xx2xxv^2=v^2#

#",where mass "m= 2kg#

Now #(E_t-E_i)/(t-0)=(v^2-32xx10^3)/(t-0)=10^4#

#=>v^2=10^4xxt+32xx10^3#

#=>v=sqrt(10^4xxt+32xx10^3)#

#=sqrt(10^4(t+3.2))#

#=10^2sqrt(t+3.2)#

Now distance traversed during 4 s

#S=int_0 ^4vdt=int_0 ^4 10^2(sqrt(t+3.2))dt#

Let #z^2=t+3.2#

#2zdz=dt#

when # t=0;# then #z =sqrt3.2 #
when # t=4;# then #z =sqrt7.2 #

#S=int_0 ^4vdt=int_0 ^4 10^2(sqrt(t+3.2))dt#

#S =int_(sqrt(3.2))^(sqrt7.2) 10^2xx2z^2dz#

# =int_(sqrt(3.2)) ^(sqrt7.2) 200xxz^2dz#

#=200/3xx[(sqrt7.2)^3-(sqrt3.2)^3]m#

Hence the average speed #="distance" /"time"=S/4#

#=200/3xx[(sqrt7.2)^3-(sqrt3.2)^3]/4=226.6m/s#

enter image source here