How do you prove that the limit of #sqrt(x+7)=3 # as x approaches 2 using the epsilon delta proof?

1 Answer
Apr 12, 2016

Let #epsilon > 0# be arbitrary. We wish to show that there exists a #delta > 0# such that if #0 < |x-2| < delta# then #|sqrt(x+7)-3| < epsilon#.

Suppose #delta = min{epsilon, 9}#, and that #0 < |x-2| < delta#.

First, note that #-delta < x-2 < delta#

#=> x+7 > 9-delta#

#=> sqrt(x+7) > sqrt(9-delta)#

#=> sqrt(x+7)+3 > sqrt(9-delta)+3 >= 3 > 1#

Now, proceeding:

#|sqrt(x+7)-3| = |(sqrt(x+7)-3)*(sqrt(x+7)+3)/(sqrt(x+7)+3)|#

#=|(x+7-9)/(sqrt(x+7)+3)|#

#=|x-2|/|sqrt(x+7)+3|#

#<|x-2|/1" "# (as #sqrt(x+7)+3 > 1#)

#= |x-2|#

#< epsilon" "# (as #delta <= epsilon# by our choice of #delta#)

Thus our choice of #delta# satisfies the desired conditions. ∎