What is #753792-:832#?

1 Answer
Apr 13, 2016

#753792 -: 832 = 906#

Explanation:

Notice that #753792# and #832# are both divisible by #2#, so we find:

#753792 -: 832 = (color(red)(cancel(color(black)(2))) xx 376896) -: (color(red)(cancel(color(black)(2))) xx 416) = 376896 -: 416#

Then #376896# and #416# are both divisible by #2#, so we can repeat the process to find:

#753792 -: 832#

#=376896 -: 416#

#=188448 -: 208#

#=94224 -: 104#

#=47112 -: 52#

#=23556 -: 26#

#=11778 -: 13#

Does this still look a little cumbersome?

We could simply long divide it at this point, but let us factor #11778# to see what's there:

#11778#

#=2 xx 5889#

#=2 xx 3 xx 1963#

#=6 xx (1300 + 650 + 13)#

#=6 xx ((100xx13)+(50xx13)+(1xx13))#

#=6 xx ((100+50+1)xx13)#

#=6 xx 151 xx 13#

#=906 xx 13#

So #753792 -: 832 = 11778 -: 13 = 906#