What is the limit of #(1 / (4x - 4x^2) ) - (1 / (4x - 5x^2) )# as x approaches #0#?
1 Answer
Explanation:
You wish to find
#lim_(xrarr0)(1/(4x-4x^2)-1/(4x-5x^2))#
Note first that plugging in
First, factor the fractions' denominators:
#=lim_(xrarr0)(1/(x(4-4x))-1/(x(4-5x)))#
Now, find a common denominator of
#=lim_(xrarr0)((4-5x)/(x(4-4x)(4-5x))-(4-4x)/(x(4-4x)(4-5x)))#
Combine the fraction.
#=lim_(xrarr0)((4-5x)-(4-4x))/(x(4-4x)(4-5x))#
Simplify the numerator.
#=lim_(xrarr0)(4-5x-4+4x)/(x(4-4x)(4-5x))#
#=lim_(xrarr0)(-x)/(x(4-4x)(4-5x))#
Cancel the
#=lim_(xrarr0)(-1)/((4-4x)(4-5x))#
We can now evaluate the limit by plugging in
#=(-1)/((4-4(0))(4-5(0)))=(-1)/((4-0)(4-0))=-1/16#
If we graph the original function, we should see that the graph approaches
graph{1/(4x-4x^2)-1/(4x-5x^2) [-1.662, 2.664, -1.718, 0.445]}