How do you find the derivative of #y=arcsin(2x+1)#?
1 Answer
Apr 24, 2016
Explanation:
differentiate using the
#color(blue)" chain rule " #
#d/dx [f(g(x)) ] = f'(g(x)) . g'(x) # and the standard derivative
# D(sin^-1 x) = 1/(sqrt(1 - x^2)#
#"-----------------------------------------------------------------"# f(g(x))
#= sin^-1 (2x+1) rArr f'(g(x)) = 1/(sqrt(1-(2x+1)^2) #
and g(x) = 2x + 1 → g'(x) = 2
#"-------------------------------------------------------------------"#
Substitute these values into the derivative
#rArr dy/dx = 1/(sqrt(1-(2x+1)^2)) . 2 = 2/(sqrt(1 - (2x+1)^2#