How do you find the derivative of #y=arcsin(2x+1)#?

1 Answer
Apr 24, 2016

# 2/sqrt(1 - (2x+1)^2)#

Explanation:

differentiate using the #color(blue)" chain rule " #

#d/dx [f(g(x)) ] = f'(g(x)) . g'(x) #

and the standard derivative # D(sin^-1 x) = 1/(sqrt(1 - x^2)#
#"-----------------------------------------------------------------"#

f(g(x)) #= sin^-1 (2x+1) rArr f'(g(x)) = 1/(sqrt(1-(2x+1)^2) #
and g(x) = 2x + 1 → g'(x) = 2
#"-------------------------------------------------------------------"#
Substitute these values into the derivative

#rArr dy/dx = 1/(sqrt(1-(2x+1)^2)) . 2 = 2/(sqrt(1 - (2x+1)^2#