Let the random variables X and Y have the joint pmf #f(x,y)=(x+y)/32#, #x=1,2#, and #y=1,2,3,4#. What are the means #mu_x# and #mu_y#, the variances #sigma ""_x^2# and #sigma "" _y^2#, and the correlation coefficient #rho#?

1 Answer
Apr 25, 2016

#mu_x=1.5625#
#mu_y=2.8125#
#sigma_x^2=0.24609375#
#sigma_y^2=1.15234375#
#rho approx -0.0366766#

Explanation:

Let's calculate those joint probabilities:

enter image source here

e.g. #P(X=2 wedge Y=3)=0.15625#.
It is now quite easy to obtain separate probability distributions of #X# and #Y#: we should sum rows or columns of area B2:E3, respectively, e.g.
#P(X=2)=sum_(i=1)^4 P(X=2 wedge Y=i)=0.09375+ldots+0.1875=0.5625#
Now we can use known formulas for the values we're looking for:
#mu_x="E"X=1*0.4375+2*0.5625=1.5625#
#mu_y="E"Y=1*0.15625+2*0.21875+3*0.28125+4*0.34375=2.8125#
#"E"X^2=1^2*0.4375+2^2*0.5625=2.6875#
#"E"Y^2=1^2*0.15625+ldots+4^2*0.34375=9.0625#
#sigma_x^2="E"X^2-"E"^2X=2.6875-1.5625^2=0.24609375#
#sigma_y^2="E"Y^2-"E"^2Y=9.0625-2.8125^2=1.15234375#

Now for the correlation coefficient #rho# we need the covariance #sigma_(xy)# so let's find the probability distribution of #XY#: (here #p_(ij)=P(X=i wedge Y=j)# )

#P(XY=1)=p_(11)=0.0625#
#P(XY=2)=p_(12)+p_(21)=0.1875#
#P(XY=3)=p_(13)=0.125#
#P(XY=4)=p_(14)+p_(22)=0.28125#
#P(XY=5)=0#
#P(XY=6)=p_(23)=0.15625#
#P(XY=7)=0#
#P(XY=8)=p_(24)=0.1875#

Now, for the covariance:
#"E"(XY)=1*0.0625+ldots+8*0.1875=4.375#
#sigma_(xy)="E"(XY)-"E"X*"E"Y=-0.01953125#
#rho=(sigma_(xy))/sqrt(sigma_x^2*sigma_y^2)=-0.0366765706779718#