#lim_(x->oo) (1+4/x)^x = (1+4/oo)^oo = 1^ oo#
This is an indeterminate type so we use l'Hopital's Rule. That is, find the limit of the derivative of the top divided by the derivative of the bottom.
Let #y=(1+4/x)^x#
#lny=ln (1+4/x)^x#-> Take # ln# of both sides
#lny=xln (1+4/x)#
#lny=ln (1+4/x)/x^-1#
#lim_(x->oo) lny = lim_(x->oo) ln (1+4/x)/x^-1#
#lim_(x->oo) lny =lim_(x->oo) (1/(1+4/x) *-4/x^2)/(-1/x^2)#
#lim_(x->oo) lny=lim_(x->oo) 1/(1+4/x) *-4/x^2 xx -x^2#
#lim_(x->oo) lny=lim_(x->oo) 4/(1+4/x)#
# lny= 4/(1+4/oo)# Note that the limit of ln y is just ln y since it is a constant
#lny=4/(1+0)=4/1=4#
#e^lny=e^4#
#y=e^4#