How do you determine the limit of #(x² - 3x - 2)/(x² - 5)# as x approaches infinity?
1 Answer
Apr 28, 2016
Explanation:
Given,
#lim_(xrarrinfty)(x^2-3x-2)/(x^2-5)#
Divide every term by the term with the highest degree in the denominator.
#=lim_(xrarrinfty)(x^2/color(blue)(x^2)-(3x)/color(blue)(x^2)-2/color(blue)(x^2))/(color(blue)(x^2)/color(blue)(x^2)-5/color(blue)(x^2))#
#=lim_(xrarrinfty)(1-3/x-2/x^2)/(1-5/x^2)#
Substitute
#=lim_(xrarrinfty)(1-3/infty-2/infty^2)/(1-5/infty^2)#
Any constant divided by
#=lim_(xrarrinfty)(1-0-0)/(1-0)#
#=lim_(xrarrinfty)1/1#
#=1#