Question #bb7dc

2 Answers
Apr 29, 2016

Assuming that #lim_(xrarroo)f(x) = 0#, use the fact that #lim_(urarroo)(1+1/u)^u = e# and the fact that the exponential function is continuous.

Explanation:

Note that #lim_(urarroo)(1+1/u)^u = e#.

If #lim_(xrarroo)f(x) = 0#, then

#lim_(xrarroo)(1+f(x)) = lim_(xrarroo)[(1+1/(1/f(x)))^(1/f(x))]^f(x)#

By the limit stated above, with #u = 1/f(x)#, we have

#lim_(xrarroo)u = oo#, and so,

#lim_(xrarroo)[(1+1/(1/f(x)))^(1/f(x))] = lim_(urarroo)(1+1/u)^u = e#

So

#lim_(xrarroo)(1+f(x))^g(x) = lim_(xrarroo)([(1+1/(1/f(x)))^(1/f(x))]^f(x))^g(x)#

# = lim_(xrarroo) ([e]^f(x))^g(x)#

# = lim_(xrarroo) e^(f(x)g(x))#

# = e^(lim_(xrarroo)f(x)g(x))#

Notes

#lim_(urarroo)(1+1/u)^u = e# is sometimes taken as the definition of #e#.

It can be verified using l'Hospital's Rule

#ln((1+1/u)^u) = u ln(1+1/u) = ln(1+1/u)/(1/u)# which takes indeterminate form #(-oo)/oo# as #xrarroo#

L'Hospitals's rule asks us to eveluate

#lim_(urarroo)(1/(1+1/u)(-1/u^2))/(-1/u^2)# which evaluates to #1#.

Since the limit of the #ln# is #1#, the limit of the expression is #e#.

Another Limit Result

If #lim_(xrarra)f(x)=1# and #lim_(xrarra)g(x) = oo#,

then we can evaluate #lim_(xrarra)(f(x))^(g(x))# using #lim_(urarroo)(1+1/u)^u = e# to get

#lim_(xrarra)(f(x))^(g(x)) = e^(lim_(xrarra)(f(x)-1)g(x))#.

Outline of proof:

As #xrarra#,

we have #f(x) rarr 1#, so

#(f(x)-1)rarr0^+#, and

#1/(f(x)-1) rarroo#

Therefore, as #xrarra#, (with #u = 1/(f(x)-1)#) we have

#(1+1/(1/(f(x)-1)))^(1/(f(x)-1)) rarr e#

We can conclude that

#lim_(xrarra)(f(x))^(g(x)) = lim_(xrarra)e^((f(x)-1)g(x))#

# = e^(lim_(xrarra)(f(x)-1)g(x))#

Although this equality holds for any #g(x)#, it is only interesting if #lim_(xrarr)g(x) = oo " or " -oo#. Otherwise we get a triviality #1^g(x) = e^0#

Apr 30, 2016

Assume that as #xtooo#, both #f(x) and g(x)to0# and we are concerned about the limit of the ratio.. See explanation for proof/derivation, under this assumption

Explanation:

#( 1 + f(x) )^(1/g(x))=e^(1/g(x))ln (1+f(x))=e^(1/g(x))(f(x)+O((f(x))^2))#.

#=e^(f(x)/g(x)(1+O(f(x))#

Now, take the limit as #xtooo#..