How do you evaluate the integral of #int tan(x)ln(cosx) dx#?
1 Answer
May 3, 2016
Explanation:
We can solve this integral using u-substitution, but it is fairly unapparent from the outset.
If we let
#du=(d/dx(cosx))/cosxdx=(-sinx)/cosxdx=-tanxdx#
Multiply the interior and exterior of the integral by
#inttanxln(cosx)dx=-int-tanxln(cosx)dx=-intudu#
Integrating this gives