What is the derivative of # f(x)=secx^2tan^2x#?

1 Answer

#f' (x)=2*sec x^2*tan x*sec^2 x+2x*tan^2 x*sec x^2*tan x^2#

Explanation:

From the given function

#f(x)=sec x^2 tan^2 x#

#f' (x)=sec x^2*d/dx(tan^2 x)+tan^2 x * d/dx(sec x^2)#

#f' (x)=#
#sec x^2*2*tan x*d/dx(tan x)+tan^2 x*sec x^2*tan x^2*d/dx(x^2)#

#f' (x)=2*sec x^2*tan x*sec^2 x+tan^2 x*sec x^2*tan x^2*2x#

#f' (x)=2*sec x^2*tan x*sec^2 x+2x*tan^2 x*sec x^2*tan x^2#

God bless....I hope the explanation is useful.