How to solve the separable differential equation and find the particular solution satisfying the initial condition y(−4)=3 ?

enter image source here

2 Answers

General Solution: #color(red)((4y+13)^(1/2)-2x=C_1)" "#
Particular Solution: #color(blue)((4y+13)^(1/2)-2x=13)#

Explanation:

From the given differential equation #y'(x)=sqrt(4y(x)+13)#

take note, that #y' (x)=dy/dx# and #y(x)=y#, therefore

#dy/dx=sqrt(4y+13)#

divide both sides by #sqrt(4y+13)#

#dy/dx(1/sqrt(4y+13))=sqrt(4y+13)/sqrt(4y+13)#

#dy/dx(1/sqrt(4y+13))=1#

Multiply both sides by #dx#

#dx*dy/dx(1/sqrt(4y+13))=dx*1#

#cancel(dx)*dy/cancel(dx)(1/sqrt(4y+13))=dx*1#

#dy/sqrt(4y+13)=dx#

transpose #dx# to the left side

#dy/sqrt(4y+13)-dx=0#

integrating on both sides we have the following results

#int dy/sqrt(4y+13)-int dx=int 0#

#1/4*int (4y+13)^(-1/2)*4*dy-int dx=int 0#

#1/4*(4y+13)^(-1/2+1)/((1-1/2))-x=C_0#

#1/2*(4y+13)^(1/2)-x=C_0#

#(4y+13)^(1/2)-2x=2*C_0#

#color(red)((4y+13)^(1/2)-2x=C_1)" "#General Solution

But #y(-4)=3# means when #x=-4# , #y=3#
We can now solve for #C_1# to solve for the particular solution

#(4y+13)^(1/2)-2x=C_1#

#(4(3)+13)^(1/2)-2(-4)=C_1#

#C_1=13#

Therefore , our particular solution is

#color(blue)((4y+13)^(1/2)-2x=13)#

God bless....I hope the explanation is useful.

May 14, 2016

#y=x^2+13x+36#, with #y>=-13/4#.

Explanation:

#y>=-13/4#, to make #sqrt(4y+13)# real..

Rearranging,

#x'(y)=1/sqrt(4y+13)#

So, #x=int 1/sqrt(4y+13) dy#

#=(4/2)sqrt(4y+13) + C#

Using #y =3, when x = -4, C = -`13/2#

So. #x = (1/2)(sqrt(4y+13) - 13)#

Inversely. #y = (1/4)((2x+13)^2 - 13) = x^2+13x + 36#