What is the limit of #(4x − sin4x)/(4x − tan4x)# as x approaches 0?

2 Answers
May 17, 2016

1

Explanation:

Calling #a(x) = 4x#, #b(x) = -sin(4x)# and #c(x)=cos(4x)# we
have #lim_{x->infty}(4x-sin(4x))/(4x-tan(4x))equiv lim_{x->0}((c(x)(a(x)+b(x)))/(c(x)a(x)+b(x)))# but
#lim_{x->x_0}((c(x)(a(x)+b(x)))/(c(x)a(x)+b(x))) =(c(x_0)(a(x_0)+b(x_0)))/(c(x_0)a(x_0)+b(x_0)) # But in this case #x_0=0# and #c(x) = cos(4x)# so #c(x_0)=1#. Putting all together we have
#lim_{x->x_0}((c(x)(a(x)+b(x)))/(c(x)a(x)+b(x))) = (a(x_0)+b(x_0))/(a(x_0)+b(x_0))=1#

May 17, 2016

#lim_(xrarr0)(4x-4sinx)/(4x-tan4x) = -1/2#

Explanation:

#lim_(xrarr0)(4x-sin4x)/(4x-tan4x)# has indeterminate initial form #0/0#.

I'll use l'Hospital's rule.

#lim_(xrarr0)(4x-sin4x)/(4x-tan4x) = lim_(xrarr0)(4-4cos4x)/(4-4sec^2 4x)#

# = lim_(xrarr0)(1-cos4x)/(1-sec^2 4x)#

The form is still #0/0#, so we'll use L'Hospital again. Note that to differentiate #sec^2 4x# we'll use the chain rule twice.

# = lim_(xrarr0)(4sin4x)/(-2sec(4x)[sec(4x)tan(4x)(4)])#

# = lim_(xrarr0)(4sin4x)/(-8sec^2(4x)tan(4x))#

# = lim_(xrarr0)(-sin4x)/(2sec^2(4x)(sin(4x))/cos(4x))#

# = lim_(xrarr0)(-1)/(2sec^3(4x))#

# = lim_(xrarr0)(-cos^3 (4x))/2 # (if you prefer)

# = -1/2#

Here is the graph:

graph{(4x-sin(4x))/(4x-tan(4x) [-4.375, 3.42, -1.795, 2.1]}