Let the sequence position be #i#
Let the sequence position of the last term be #n#
Let the difference between each term be #d#
Let the ith term in the sequence be #a_i#
Let the last term in the sequence be #a_n#
So
#a_i->a_1=9#
#a_i->a_2=14#
#a_i->a_3=19#
#a_i->a_n=a_34=?" "larr "the last term in the sequence"#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Investigating the 'common difference' between each term")#
#14-9= 5#
#19-14=5#
#color(green)("the difference between each successive term is "d=5)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the value of the 34th term")#
So if #a_i->a_1 = 9" "# then #" "a_i->a_0 = 9-5=4#
So
#a_1=a_0+d#
#a_2=a_0+d+d" "->" "a_0+2d#
#a_3=a_0+d+d+d" "->" "a_0+3d#
so #a_i=a_0+(ixxd)#
and #a_n=a_0+(nxxd)#
So #a_n=a_34=a_0+(34xxd)" "->" "4+(34xx5) = 174#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the sum of the 34 terms")#
Consider again the:
#a_1=a_0+d#
#a_2=a_0+d+d" "->" "a_0+2d#
#a_3=a_0+d+d+d" "->" "a_0+3d#
The sum of #a_1 to a_3# is:
#a_1->a_0+d#
#a_2->a_0+2d#
#a_3->underline(a_0+3d)" "larr" add"#
#" "3a_0+6d#
Which is the same as:
#3a_0+(d+2d+3d)#
#3a_0+d(1+2+3)#
#3a_0+d(3xx"Mean value")#
#(ixxa_0) + d(ixx("first count+last count")/2)#
#(ixxa_0)+d(ixx(1+i)/2)#
'.....................................................
So for a count of #n# terms we have
#color(green)((na_0)+d(nxx(1+n)/2))#
#color(red)("Notice that in the end I did not need the value of the last term")#
'.................................................
#n=34#
#d=5#
#a_0=4#
sum of the sequence is #(34xx4)+5(34xx(1+34)/2)#
#color(green)(=136+2975=3111)#