Let f be a continuous function: a) Find #f(4) if ∫_0^(x^2) f(t) dt = x sin πx# for all #x#. b) Find #f(4) if ∫_0^ f(x)t^2 dt = x sin πx# for all #x#?

1 Answer
May 30, 2016

a) #f(4)=pi/2#; b) #f(4)=0#

Explanation:

a) Differentiate both sides.

Through the Second Fundamental Theorem of Calculus on the left-hand side and the product and chain rules on the right-hand side, we see that differentiation reveals that:

#f(x^2)*2x=sin(pix)+pixcos(pix)#

Letting #x=2# shows that

#f(4)*4=sin(2pi)+2picos(2pi)#

#f(4)*4=0+2pi*1#

#f(4)=pi/2#


b) Integrate the interior term.

#int_0^f(x)t^2dt=xsin(pix)#

#[t^3/3]_0^f(x)=xsin(pix)#

Evaluate.

#(f(x))^3/3-0^3/3=xsin(pix)#

#(f(x))^3/3=xsin(pix)#

#(f(x))^3=3xsin(pix)#

Let #x=4#.

#(f(4))^3=3(4)sin(4pi)#

#(f(4))^3=12*0#

#f(4)=0#